中文

建一条绿色通道,让电子传输不再过“独木桥”

  • 来源:科技日报
  • 阅读量:2559
  • 时间:2019-04-04 15:05:11

 

 

       据《科技日报》4月4日报道,“电子在纳米结构中的传输是一个‘千军万马过独木桥’的过程,而我们找出了一条绿色通道。”复旦大学物理学系教授修发贤这样介绍他的最新研究成果。

 

       在纳米尺寸的导体中运动着的电子,若找不到“宽敞”的通路,相互撞击,四处“碰壁”,就会使导体发热,产生能量损耗。寻找超高导电材料是解决此类问题的一把钥匙。

 

       近日,修发贤课题组在砷化铌纳米带中观测到其表面态具有超高电导率,这也是目前二维体系中的最高电导率,其低电子散射几率的机制源自外尔半金属特有的电子结构(即费米弧表面态)。相关研究论文已在国际知名期刊《自然·材料》发表。

 

让大量电子高速通行

 

       正如实心的管子不能通水,空心的管子允许水流过,如果材料中有大量可以参与导电的自由电子,则称为导体。单位时间内通过单位面积的电子数量,决定了材料导电性的好坏。

 

       铜、金和银是现行应用最广泛的优良导体。其中,铜已经大规模用于晶体管的互连导线。但遗憾的是,当这些材料变得很薄,进入二维尺度时,电子的散射明显增多,其运动方向容易发生大角度偏折,导电性将迅速变差。

 

       信息时代,计算机和智能设备体积越来越小,同时信号传输量爆炸式增长,芯片中上千万细如发丝的晶体管互连导线“运送压力”随之加大,“电流从输入端进入芯片时,相当于千军万马从大草原一下子上了独木桥,如果电子在独木桥上有巨大耗散,芯片运行时就会剧烈发热,影响运行状态。”修发贤说,这一定程度上制约着信息领域的进一步发展。

 

       不用“排队”,也不会“拥挤”,有没有一种办法让大量电子在这些纳米级互连导线中顺畅高速通行?“如果能构建一条绿色通道就好了!”

 

导电性千倍于石墨烯

 

       一般来说,增加导电性无非有两种办法,一是把电子变多,二是让电子跑得快些,然而,这两者很难同时实现。但在外尔半金属砷化铌纳米带的表面,不可思议的事情发生了。修发贤课题组基于拓扑表面态(费米弧)的低散射率机制,实现了百倍于金属铜薄膜和千倍于石墨烯的导电性,这是目前二维体系中最好的。

 

       砷化铌其实是物理学家们的“老朋友”了,近几年作为第一批发现的外尔半金属被广泛研究,但以往成果都止步于肉眼可见的高维度体材料,其低维状态下的物理性质研究迟迟未有涉及。纳米材料的制备是要过的第一道难关。

 

       “铌的熔点很高,砷的熔点又特别低,要把这两种材料融在一起非常难。”高温加热“蒸”不出来,半年后,他们改变“硬碰硬”的思路,用氯化铌和氢气的化学反应作为铌的来源,再与砷结合。气体流量有多大?温度有多少?是不是需要催化剂?又经过一年多的反复试验,纳米结构终于长出来了。

 

       宽约几微米,长约几十微米,厚度在纳米级别,在指甲盖大小的氧化硅衬底上,分布着百万个比头发丝还要细的纳米晶体。课题组从“0”到“1”制备出了高质量样品,这本身已是一项创举。

 

       《自然·材料》的审稿人对样品质量给出了高度评价:“用于制备砷化铌纳米带的方法是有趣的、创新的,这是拓扑材料领域的一项非常及时的工作。”“他们生长出了一些非常好的样品。”

 

高性能导体材料新思路

 

       在成功制备砷化铌纳米带之后,修发贤团队还不满足,决意攀登更高的山峰:进一步观察和发现材料特性。课题组发现,制备出的新材料有着惊人的高导电率,材料本身既具有很高浓度的电子又具备超高的迁移率。

 

       修发贤介绍,砷化铌纳米带的高导电率要归功于其表面与众不同的电子结构——具有拓扑保护的表面态(费米弧),“拓扑保护的表面态的概念可以这样理解,就像是家里用的瓷碗外表面镀了一层金,瓷碗本身不导电,但表面这一层金膜导电。更神奇的是,如果存在拓扑保护,这层金膜被磨掉之后,下面就会自动再出现一层金膜,重新形成导电层。这就是一种由物质本身的电子结构决定的拓扑表面态。”

 

       那么如何得知这种表面态导致了高的电导率呢?课题组运用了测量低温量子震荡的方法,证明了来自费米弧表面态的电子贡献了大部分电导率。修发贤告诉科技日报记者:“砷化铌中的这种费米弧表面态具备低散射率的特性,即使在较高电子浓度的情况下,体系仍然保持低散射几率。这样就能确保大部分电子都沿一个方向运动,让电子传输的效率大大提高。”

 

       和常规的量子现象不同,费米弧这一特性即使在室温仍然有效。这一发现为寻找高性能导体提供了一个可行思路。利用这种特殊的电子结构,可以在提高电子数量的同时,降低电子散射,从而实现优异的导电特性,这在降低电子器件能耗等方面有潜在应用。